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Abstract— The current competitive market condition in 
the oil industry is so concentrated on companies' budgets 
that they require methods to extract oil from wells at the 
lowest possible cost. All pumping units, new or old, require 
regular preventive maintenance and constant inspection, 
and with 30 per cent of total oil production coming from 
sucker rod pumps, the cost of diagnostics must be reduced 
accordingly  

This article focuses on the intelligent diagnostics of the 
rod and borehole pump for preventive maintenance and 
monitoring during the life cycle of the well. The use of 
artificial intelligence methods for predictive diagnostics of 
equipment condition solves problems without production 
stoppages and without additional interventions from 
outside.  
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II. INTRODUCTION  

The current state of the oil and gas industry in 
Kazakhstan is characterized by the fact that the vast 
majority of operations are at a late stage of development, 
characterized by increased water cut, reduced average 
flow rates from oil production wells, and higher costs per 
unit of oil produced. In addition, the oil and gas industry 
are just recovering from a severe downturn that led to 
significant operating losses for oil producers. 
According to a 2019 report by the Oil and Gas 
Information and Analysis Centre of Kazakhstan, 90.4 
million tons of oil were produced, of which 30% were 
produced using sucker-rod pumps [1, 2]. 
As is known, a sucker-rod pump (SRP) is a single-acting 
pump that converts the rotary mechanism of the motor 
into a vertical reciprocating motion to drive the pump 
shaft and is used to mechanically lift oil-bearing fluid 
from wells [].  
According to Ambyint, it costs about $250,000 to install 
the SRP together with all the starting equipment, and up 
to $100,000 to repair or replace it [3]. This fact, with 
declining oil prices and decreasing profits, is forcing oil 
producers to use smart maintenance technologies to 
reduce costs, improve productivity and make their assets 
more profitable.  

Various methods and tools are used for predictive fault 
diagnosis without having to stop the process, thereby 
reducing the cost of repair work 

III. DIAGNOSTIC METHODS FOR SUCKER-ROD PUMPS 

A. The pump unit is connected to an electric or 
combustion engine via a torque box, which converts 
the rotary motion of the engine into a reciprocating 
motion of the pump rods. The pump rods in turn 
transfer the mechanical energy received at the surface 
to the down-hole pump. Some energy is lost to 
friction during this process.  In figure 1 shows the 
main components of the SRP, namely the pump unit, 
the pump rod, and the pump itself.  

 
Figure 1 Mechanics of the sucker-rod pump 

 
The depth pump, which is shown in figure 2, transfers the 
resulting mechanical energy into the multiphase fluid (oil, 
gas, sediment, and water). 
 

 
Figure 2. Depth pump working principle 



The main components of a submersible pump are the 
plunger, casing, pressure valve and suction valve. 
Together they form a positive displacement pump system. 
When the plunger moves downwards, the pressure valve 
opens, and the suction valve closes. In this way, the 
volume of the oily liquid column is supported by the 
suction valve assembly and the liquid flows into the 
housing. The inside of the plunger is filled with oily 
liquid. Plunging the pump rods into the liquid causes a 
small discharge due to the volume that has been 
displaced. 
As the plunger moves upwards, the pressure valve closes, 
and the suction valve opens. The oily liquid moved by the 
plunger comes to the surface, while the body is filled 
through the suction valve. In this way, the volume of 
liquid in the pipe is transferred to the pump rod. 
During continuous operation of the deep well pump, due 
to the reciprocating motion of the rods, the pumped oily 
liquid begins to fill the pump rod and rise to the surface. 
There are three methods to diagnose the condition of the 
sucker-rod pump without stopping it and raising the 
plunger to the surface: the dynamometer method, the 
wattmeter method and using artificial intelligence based 
on the analysis of sucker-rod diagrams. 
 

B. Dynamometry  

Dynamometry of the rod pumping unit is the most 
important source of information about the performance of 
the rod pump, the rod string, the condition of the 
downhole hole, etc. It is carried out by means of special 
technical means [4]. It is carried out by means of special 
technical means [4]. Data from the dynamometer are 
transferred to a portable data acquisition module and then 
to a centralized upper-level system, or to a programmable 
controller installed at the well site and allowing to 
process, analyze and control operating modes of pumping 
equipment [5]. The dynamogram is a graph of load 
dependence, at the suspension point of the rod, on the 
movement of the polished rod. The theoretical 
dynamogram for normal pumping operation is based on 
gravity, elasticity, friction, and Archimedes' principle. 
Insufficient consideration of other influencing factors, 
such as the force of inertia and the properties of the 
pumped liquid, limits the capability of this method. 
The dynamogram is shown in figure 3, which is a 
diagram of the rod load - p as a function of the polished 
rod stroke - s. The process can be divided into four steps. 
Point A in the dynamogram indicates the bottom-most 
position of the plunger and point C corresponds to the 
top-most position.  
Stage 1 - polished rod and pump plunger move 
downwards. Line D1-A1 corresponds to the load 
difference from rod pressure and friction force P, the line 
is parallel to the zero line (s axis) of the dynamometer 
due to the constant rod pressure and friction force. Line 
D-A corresponds to the static pressure of the rod in the 
liquid Prod without friction force. Consequently, the 

friction of the rod against the liquid reduces the stroke 
length of the plunger and the suction valve closes at A1 
(interval f↓) instead of point A.  
Stage 2 - the polished rod changes direction and moves 
upwards. When the direction of movement of the plunger 
is changed, the process is captured by the straight-line 
segment A-A2. Starting from point A2 the pump rod 
takes the load from the weight of the liquid column Pf. At 
point B1 the load is equal to the sum of the weight of the 
rod with the liquid and the friction forces. That is, at A2-
B1 the pump rod stretches and the load increases, but the 
polished rod does not move and is still in the bottom end 
position of the plunger. At this point the pump suction 
valve opens and the oily liquid flows into the pump 
cylinder. 
Stage 3 - polished rod and pump plunger move upwards 
which is described by the line B1-C1. The line is also 
parallel to the s-axis of the graph due to constant rod 
pressure and friction force. 
Stage 4 - The polished rod changes direction and moves 
downwards, the friction force also changes its direction. 
The process is recorded by the straight-line C-C2. The 
load change corresponds to C2-D1 when the rod string is 
unloaded, and the pipes are loaded. Point D is the 
opening of the pump discharge valve and the start of the 
downward movement of the plunger. 

 
 

Figure 3. Dynamogram profile 
 

The reading of the dynamograms allows quantitative and 
qualitative determination of the pump's performance 
loads and stresses in the polished rod, plunger and rod 
stroke lengths, degree of pump filling, tightness of the 
pump suction and pressure valves, gas impact, correct 
plunger fit, leaky tubing, rod or rod coupling turnovers 
and breakages, plunger jamming. The dynamometer can 
describe 30 different state parameters of the sucker-rod 
pumping equipment without lifting it. The transformation 
curve is a multi-resolution method that has been widely 
used to solve feature extraction problems [6,7,8]. 
The shape of the dynamometer depends on the type of 
failure of the sucker-rod pump and can be used to identify 
the following types of failures in the sucker-rod pumping 
equipment: fluid leakage from the tubing and valves 
(suction and pressure); mechanical failures such as high 
and low plunger fit, rod breakage, plunger jamming, etc; 
other problems related to pumping liquids gas, sand, 
paraffin. 



C. Wattmetrics process  

Modern SRPs are driven by variable frequency drives, 
which provide control, speed adjustment and parameter 
control of the SRP. The method of watt metering is based 
on the power consumption of these variable frequency 
drives. Wattmetrics is the process of obtaining a watt-
hour diagram which shows the relation between the 
power N(φ) consumed by the pump motor and the angle 
of the crankshaft, or the dependency of the power 
consumed by the installation on time [4]. The analysis of 
the wattmeter spectrum enables the detection of vibration 
and shock loads, which makes it possible to diagnose 
gearbox and bearing defects [9]. The difference between 
the Wattmeter and the dynamometer is that the 
dynamometer is mainly used for the submersible part of 
the shaft, while the Wattmeter is more informative for the 
above-ground part. 
During the stroke, the pump rods are subjected to static 
and dynamic loads. The downward movement of the 
pump rods at the very end of the stroke causes a higher 
load, while the upward movement of the pump rods at the 
very end of the stroke causes a lower load. Since the 
pump rods are directly connected to the pump itself, these 
loads are transferred to the variable speed drive. Thus, 
information about the condition of the underground 
equipment is contained in the wattmeter spectrum. 
Experimentally, each state-specific wattmetergram can be 
linked to one of the various dynamometer classes, which 
are widely used in rod pump monitoring and diagnostics. 
This can enable rod pumps to be diagnosed directly from 
the wattmetrogram. Furthermore, rotor defects, static and 
dynamic eccentricities and bearing defects can be 
identified by the spectral power density. 
A wattmeter diagram of a fully balanced and serviceable 
SRP is shown in Figure 4. For each full stroke of the 
boom the SRP has two half-periods with significant peaks 
corresponding to the horizontal position of the crank. 
According to the regulations, the difference in maximum 
power consumption by the drive motor of the pump unit 
during the lowering of the depth pump rod must not 
exceed 10% [15]. 
 

 
Figure 4. Wattmeter diagram of a fully balanced SRP 

 
Insufficient amount of counter torque, created by 

cranked loads during lowering of sucker-rod pump 
column at unbalanced sucker-rod pump (fig. 5), leads to 
transition of drive motor to generator mode, and working 
stroke of pump rod is accompanied by increased loads on 
gearbox and pumping unit motor. The consequence of 
these processes is increase of specific energy consumption 

when lifting of formation fluid, high dynamics and 
exceeding of normative values of loads in elements of 
sucker-rod pump. 

 

 
Figure 5. Wattmetrograms of unbalanced SRP (low load) 

 
The analysis of wattmetrograms makes it possible to 

predict the most common faults of deep well pumps. [4] 
The classification of common faults can be solved by 
linear partitioning of the phase plane into parts, the 
appearance of each of which is determined by the 
presence or absence of certain faults. The classification 
features in the wavelet transform wattmetergram are 
determined by the equation [10]: 
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Where, φ(i,k) is the basis wavelet function; 
f(t) is the wavelength function. 
i,k ϵZ. 
Diagnostic signs of sucker-rod failure are an increase 

in peak active power consumption by the motor when the 
sucker-rod head is lowered (the weight of the sucker-rod 
string does not compensate for the counteracting torque 
created by the crank). At the same time, the half-period of 
power increase is absent in the watt diagram during rod 
lowering, which is caused by absence of external load 
acting during lifting of formation fluid column of the 
borehole. Similarly, defects in the pressure valve of the 
submersible pump are shown. They consist in a significant 
decrease of power, consumed by the engine during the 
boom lift, because of leakage of most of formation fluid 
through the defective pressure piston valve back to the 
pump cylinder, and as a result, a significant drop in the 
point of suspension of the pump rods load. Uneven load 
growth during lowering of sucker-rod string, increase of 
dynamic force components at sucker-rod drive are the 
evidence of faulty sucker-rod pump valve. 

The spectrum analysis of active power signal, shown 
on a figure 6, allows to reveal frequency components from 
0 to 30 Hz, characterizing oscillations of kinematic chain 
"downhole pump - pump unit - reducer - driving motor". 
[4] Defects in working units and mechanical transmissions 
of sucker-rod drives determine occurrence of variable 
loads, that cause appearance of new spectral components. 
Periodic measurement of values in a power spectrum, 
characterizing concrete defects in the drive engine and 
mechanical transmission, allows to carry out estimation of 
technical condition of SRP in the simplest mode and, if 



necessary, to carry out repair actions for prevention of 
failures.  

 

 
 
Figure 6. Wattmeter spectra in the presence of a pump-motor unit 

defect. 
Spectral analysis of energy consumption records in 

asynchronous motors (Figure 6) can be used to detect 
defective electrical rotor parts, including rotor winding 
breaks and short circuits between layers; stator electrical 
parts, including power winding breaks and electrical 
asymmetry, short circuits between layers; static and 
rotating eccentricities; bearing defects resulting in 
fluctuating air gap shapes. Gearwheel faults, gear fit on 
the shaft, misalignment of driven shafts and their rotation 
supports, and defects in the V-belt transmission can be 
diagnosed by the nature of the change in the power signal 
spectrum. 

D. Artificial intelligence methods 

Dynamometry provides an exactly accurate indication of 
the condition of the SRP, but also requires intervention 
by workers, because a dynamograph will need to be 
installed and the instrument read. In Kazakhstan, 
dynamometer readings are taken once a month in oil 
wells, which means there is no continuous diagnostics of 
the SRP's condition, and it is impossible to predict its 
condition.  
The disadvantages of this method of evaluating the 
technical condition of the SRPs with respect to their 
energy consumption include the difficulty in detecting 
several defects at the initial stage of development. Firstly, 
these are roller bearing failures, crankshaft rotation, wear, 
and destruction of connecting rod pins. The occurrence 
and development of these defects is accompanied by a 
change in the diagnostic signals of the spectra in the 
higher frequency range [16]. In real plant conditions, in 
the presence of liquid leaks in the pump, gas influences 
and other irregularities in the normal operation of the 
pump, the deciphering of the diagnostic readings 
becomes even more complicated and, as a rule, the 
influence of these irregularities is mixed and it is difficult 
to distinguish, in an explicit way, the influence of a single 
indicator on the pump malfunction and on its delivery 
[11]. The use of artificial intelligence techniques for 
predictive diagnosis of the condition of equipment can 
solve these problems without stopping production and 
without additional intervention from outside. One of the 
problems associated with pattern recognition is the so-
called curse of dimensionality [12]. There are two reasons 
why the dimensionality of a feature vector cannot be too 

large: first, the computational complexity would become 
too great; second, increasing the size would eventually 
lead to a decrease in performance [13]. To reduce the 
dimensionality of the feature space, there are two 
different approaches. One is to discard certain elements 
of the feature vector and leave the most representative 
ones. This type of reduction is feature selection [14]. The 
other is called feature extraction, in which the original 
feature vector is converted into a new feature vector using 
a special transformation and the new features have much 
smaller dimensions 

IV. SIMULATION  

The simulation in the first stage is run-to-fail (RTF), 
which means that wells are maintained only after an 
accident occurs, and the goal of RTF simulation is to 
generate a large volume of telemetry and repair data. 
Machine learning (ML) models are then trained on the 
telemetry and repair logs to predict which production 
wells are likely to fail soon. Once the machine learning 
models are built, the simulation is repeated in predictive 
maintenance mode, which uses these machine learning 
models to mark those wells that are likely to fail soon and 
then assigns available service personnel to perform 
preventive maintenance on the marked wells. 

A. Initial Data 

The input data for the task is generated in the form of an 
excel spreadsheet with the following well parameters: 
number of SRPs, number of time steps, time interval each 
sensor has to wait before sending any telemetry, 
maintenance strategy used in the simulation, number of 
technicians available to service oil wells, and time needed 
for technicians to repair the well where an emergency 
failure has occurred. 

B. Simulation results and discussion  

Well flow rates decrease over time due to oil 
accumulation, and production is also interrupted when 
emergencies occur and they are repaired, as shown in the 
graph of well No. 123's production efficiency over time. 

 
Figure 7. Processing capacity graph over time for machine 123 

 
Different problems by design are more or less likely in 
different parts of the temperature, pressure and load 
parameter space, and the following scatter diagram shows 

first harmonic of the 
reversible motor 



that plough jamming is most likely to occur when the 
load on the pump rods becomes large. 

 
Figure 8 Scatter diagram of the "Plunger jamming" incident 

 The scatters of failures and deviations had to be 
compiled over the simulation period in terms of classify 
failures rapidly and accurately in the future 

 
Figure 9 Load simulation results to process parameters 

 
The result of the simulation is shown above, depending 
on the current process parameters during loading and the 
identification of the optimum parameter in the process, 
which ensures optimal operation of the pump in order to 
avoid failures. 

 
Figure 10. Production efficiency and the use of technicians with a 

predicate 
 

As can be seen from the graph, the average use of 
technicians for repairs due to the failure of the SRP has 
decreased, and the average efficiency of production has 
also increased. 

C. Testing and validation of simulation results 

The quality of algorithm performance is verified by 
methods known in machine learning: MAPE, MSE, 
RMSE The mean absolute percentage error (MAPE), also 
known as the mean absolute percentage deviation 
(MAR), is a measure of prediction accuracy of a 
prediction method in statistics, such as in trend 

estimation, also used as a loss function for regression 
tasks in training an algorithm. It usually expresses 
accuracy as a percentage, and is defined by the equation: 
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Figure 11 quality of the Simulation algorithms  

 
The simulation result shows that we are able to reduce the 
MAPE error to 0.01 % (fig 11).  At the same time, the 
number of training cycles can be reduced, as already after 
10 training cycles, the model losses are no longer 
significant. 
Based on the results of the ML training experiments, 
model number 3 can be selected for further testing on 
online data in the SCADA system. For this purpose, the 
model was saved on TensorFlowServing. New data are 
fed to the model by means of API requests in JSON 
format and the result from the trained model was fed back 
to any SCADA, where graphs were already built based on 
previous readings and predicted values. 

ACKNOWLEDGMENT  

This research was conducted during the master's and PhD 
thesis of Satbayev University and the focus in simulation 
thanks to open data access and the support of al-Farabi 
Kazakh National University 

REFERENCES 
[1] Oil and Gas Information and Analysis Centre. Infographics // Nur-

Sultan, 2020. 
[2] NC Kazmunaigas JSC. Annual Report 2019 // Nur-Sultan, 2020. 
[3] David Wethe 'Nodding donkeys' challenged to pump oil from 

horizontal wells // Bloomberg Dec. 15, 2017 
[4] Shinyakov Y., Sukhorukov M., Torgaeva D., Soldatov A. Methods 

and means of control of the rod pump operation // International 
Journal of Engineering and Technology, 2018 

[5] V.D. Kovshov, M.E. Sidorov, S.V. Svetlakova, Dynamometry, 
modelling and diagnostics of the deep rod pumping unit condition 
// 

[6] D.O. Bruno, M.Z.D. Nascimento, R.P. Ramos, V.R. Batista, L.A. 
Neves and A.S. Martins, LBP operators on curvelet coefficients as 
an algorithm to describe texture in breast cancer tissues, Expert 
Systems with Applications. 55 (2016) 329–340.  

[7] F. Li, F. Fang and G. Zhang, Unsupervised change detection in 
SAR images using curvelet and L1-norm based soft segmentation, 
International Journal of Remote Sensing. 37 (14) (2016) 3232–
3254. 

[8] Y. Li, Q. Yang and R. Jiao, Image compression scheme based on 
curvelet transform and support vector machine, Expert Systems 
with Applications. 37 (4) (2010) 3063–3069. 



[9] Khakimyanov M.I., Pachin M.G., Monitoring of sucker-rod 
pumping units condition by the results of wattmetrogram analysis 
// Electronic scientific journal "Oil and Gas Business" № 5, 2011 

[10] Dunayev I.V., Diagnostics and monitoring of downhole sucker-
rod pumping unit condition on the basis of dynamometry and 
neural network technologies // Department of Technical 
Cybernetics at Ufa State Aviation Technical University, 2007[in 
Russian] 

[11] A.G.Rzaev, S.R.Rasulov, A.M.Abdurakhmanova // Research of 
deep pump condition diagnostics, Institute of Control Systems, 
Azerbaijan State University of Oil and Industry, 2016 

[12] K. Feng, Z. Jiang, W. He and B. Ma, A recognition and novelty 
detection approach based on Curvelet transform nonlinear PCA 

and SVM with application to indicator diagram diagnosis, Expert 
Systems with Applications. 38 (10) (2011) 12721-12729. 

[13] van der Heijden, F., Duin, R., De Ridder, D., & Tax, D.. (2004). 
Classification parameter estimation and state estimation: An 
engineering approach using MATLAB. John Wiley & Sons Inc. 

[14] Theodoridis, S., & Koutroumbas, K. (2003). Pattern recognition. 
New York: Academic Press. 

[15]  Bubnov M., Zuzev A. Means of diagnosing equipment of rod 
deep-well pump installations // Proceedings of the First Scientific 
and Technical Conference of Young Scientists of the Ural Power 
Engineering Institute. Yekaterinburg, 2016. [in Russian] 

[16]  Barkov A., Barkova N., Borisov A. Methods for diagnostics of 
mechanisms by electric current consumption // North-West 
Educational Center. Saint Petersburg, 2012.)[in Russian] 

 


